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Optoelectronic Intelligent RAM 
Multiprocessor: Opto-IRAM

Objectives:

• Scalable, high-performance, parallel 
processing with general-purpose utility

• Low processor–memory latency
• Low power-delay-volume product
• Exploit VLSI Photonics core technologies

Approach:

• IRAM microprocessor architecture for 
low local memory latency

• Simple cache-coherent protocol and wide 
optical transport for low inter-chip latency

• High-performance scalar processor plus 
massively parallel Computational RAM 
(C-RAM) processing element array

• Design automation to optimize electrical, 
optical interconnect resource utilization

• Advanced free-space OE module concept

Accomplishments:

• OCRAM architecture
• OE module physical design for virtual 

prototyping
• Placement and routing tool for mixed-

mode interconnect optimization
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Opto-IRAM
Overview of Technical Approach

Central Concepts:
• Reduced memory latency in multiprocessors with on-chip RAM and          

wide, parallel, optical inter-chip network
• Synergy of Computational-RAM concept with global, optical inter-PE netw’k
Computing and network architecture:
• Fast scalar processor; on-chip SDRAM; array of bit-serial PEs at sense amps
• Cache-coherent, parallel variant of S-Connect for low-latency shared memory
Advanced OE module concept:
• Free-space optics on-module; compliant guided-wave optics between modules
• Simple physical design with common beam specification at module periphery
Design automation:
• Conjoint optimization of bimodal free-space-optical/wire global interconnects
Modeling:
• Holistic model linking system performance to OE component characteristics
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Opto-IRAM Rationale

Processor–memory latency requires implementing 
resource-intensive latency-hiding mechanisms.

Bring DRAM onto the CPU: Intelligent RAM (IRAM) . . .

A single IRAM node does not have scalable memory. 

Network multiple chips together to expand memory . . .

Going off-chip for more memory forfeits the latency 
advantage of on-chip DRAM.

Use the physical bandwidth and parallelism of VLSI 
Photonics program technologies, together with simple 
distributed memory protocols, to implement off-chip 
memory access with low latency  . . .

Opto-IRAM Multiprocessors!
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Optical Computational RAM 
(OCRAM) Rationale

Conventional memory system architecture masks the 
enormous memory bandwidth developed at the sense 
amplifiers.

In addition to the scalar CPU, place simple (e.g., bit-serial)
PEs in the DRAM banks . . .

PEs need interconnection for data-parallel applications. 

Interconnect PEs into a mesh-like network . . .

Inter-PE latency across mesh is large.

Implement small-diameter inter-PE network using free-
space optics . . .

Opto-CRAM concept!
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Opto-IRAM/CRAM Node Overall 
Organization
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Passive, point-to-point inter-PE network (CCC)

(Optical paths)

(Electrical paths)

: CPU sees cache-coherent bus.

: Computational RAM (CRAM) PEs
exploit bandwidth at sense 
amplifiers.

: Separate optical network facilitates 
global connectivity among PEs.

: Low inter-chip cache line latency 
from parallel optics.

S-Connect:
: Supports cache-coherent global 

address space
: Scalable, point-to-point network
: See http://playground.sun.com/ 

pub/S3.mp/s3mp.html
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Unique Features of OCRAM

• Decouple PE cycle from memory cycle
– Use double-buffering to overlap PE operation and memory access 

=> multiple instruction streams, similar to pipelining
– PE is simple and fast - can be clocked much faster than DRAM
– Use destructive DRAM reads when possible - fast and low power

• Balance compute bandwidth and memory bandwidth
– One PE for multiple DRAM columns  
– Many PE operations overlap each DRAM operation
– Width constraints on PE are loosened - more efficient layout

• Inter-PE communication bandwidth
– Solution: Use optical interconnect
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Sample OCRAM Microprogram
(Add32) - 195 clock cycles

c ADD R2 0 31 ; init. Loop ctr.
p SIMD Y<-0 ; init. Carry in
c LOOP0 end R2 R3 ; R2 counts 31..0, R3 counts 0..31
c ADD R4 32 R3 ; calculate bit# of hiword[R3]
a BITSEL R4 ; M is now alias for hiword[R3]
p SIMD X<-M ; save hiword[R3] in X
a BITSEL R3 ; M is now alias for loword[R3]
p SIMD M<=X^Y^M ; calc. sum & store in loword[R3]
end:      
p SIMD Y<=/M*(X+Y)+XY ; calc. Carry out & store in Y
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OCRAM System Simulator
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• e.g., bus, S-connect
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OCRAM Status and Goals

Status:
• OCRAM Instruction Set Definition Complete 
• PE Preliminary Layout Complete
• Preliminary SPICE Simulations Performed (not extracted from layout)
• Microcode for several basic operations completed
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Opto-IRAM Single-Chip Module

: Free-space intra-chip, 
Guided-wave (compliant) 
inter-chip connections.

: Single optical interface 
specification to OE module 
substrate.

: Most critical alignment 
(microlenses to sources/ 
detectors) is drawn within 
a highly controlled 
environment (VLSI/OE 
aggregate).

: Free-space path between 
imaging bundle and chip 
provides routing and 
access to any chip ports.

This  plane: 
off-axis
microlenses

Mechanically compliant 
guided-wave transport

Chip carrier

Molded optic

OE substrate

Scalable optical interconnect hierarchy
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Regularity and Free-Space Optical 
Interconnection: CAD Opportunity

d

� distinct�facets

Optimal placement and net assignment:

Some patterns with identical space-variance:

: Regularity matters, not path length.

Fourier-plane system volume is 
sensitive to space-variance:

: Shorter average wire length

: Regular optical pattern

: Physical compactness
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CAD for Partitioning/Placement

Problem statement:
• Given: Functional cells, netlist, and lattice of optical input and output ports.
• Place cells and assign nets to optical ports to minimize the cost function.

Cost function:
• Terms for : wire resources cost, : optical resources cost
• Wire resources cost term   + 2 of wire length distribution
• Optical resources cost term   space-variance of optical paths

Algorithm:

• Evaluate many standard-cell placements.                                                
For each placement, evaluate best assignment of nets to optics; 
For each assignment, evaluate the best routing of electrical nets:                                      
 To other nets,                                                 
 To optical ports.

• Simulated annealing, genetic algorithms for stochastic optimization
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Partitioning/Placement Approach

Local Electrical
Interconnect

Global
Optical

Interconnect
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Optimization

• Simulated Annealing

• Genetic Optimization

• Cost Function tries to maximize utilization of optical  bandwidth

• Layout compaction done after each “move”..
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Cost Reduction vs. No of Optical 
Directions
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Routing Without Optimization

Routing without optimization
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Optimized Optical Nets

Optical routing with optimization
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Optimized Electrical Nets

Electrical routing with optimization
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Optimization Results

No. of 
modules

% of wires 
converted to 
optical links

% reduction 
in longest 

wire length

% reduction 
of mean cost

No. of 
optical 

directions

9 25 39 22 246

16 44 44 28 437

25 57 52 40 567

36 60 69 45 598

Comparison with different number of modules
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Optimization With Diff Sensor 
Layouts

Arrange-
ment

% of wires 
converted to 
optical links

% reduction 
in longest 

wire length

% reduction 
of mean cost

No. of 
optical 

directions

(a) 44 44 28 437

(b) 42 37 24 399

(c) 40 32 23 373

Comparison with different sensor distribution
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Optimization: Global vs. Local 
Interconnect
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Optimization Results

10 50 100 200 300 400 500 600

9
OD 9 49 96 175 208 249 246 246

Total 2 % 10 % 18 % 30 % 34 % 38 % 37 % 38 %

Longest 11 % 32 % 26 % 35 % 36 % 33 % 42 % 39 %

16

OD 9 49 99 195 285 345 389 437

Total 2 % 9 % 19 % 33 % 44 % 51 % 55 % 58 %

Longest 20 % 26 % 41 % 41 % 45 % 36 % 45 % 44 %

25

OD 9 49 99 199 299 395 486 567

Total 2 % 10 % 19 % 34 % 48 % 58 % 67 % 73 %

Longest 21 % 31 % 33 % 47 % 54 % 53 % 58 % 52 %

36

OD 9 49 99 199 299 399 498 598

Total 2 % 10 % 19 % 34 % 49 % 60 % 69 % 78 %

Longest 19 % 31 % 46 % 47 % 56 % 62 % 66 % 69 %

49

OD 9 49 99 199 299 399 499 596

Total 2 % 10 % 19 % 35 % 61 % 61 % 70 % 78 %

Longest 17 % 31 % 48 % 58 % 61 % 61 % 68 % 64 %
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Opto-IRAM
Summary of Accomplishments

Computing and network architecture
• OCRAM node architecture, programming model
• Cache-coherent, shared-memory multiprocessor architecture 

based on S-Connect 
Holistic modeling and virtual prototyping
• Behavioral link modeling with Spice, Chatoyant
Optical interconnect architecture
• Advanced OE module physical design
Design automation
• New partition/placement tool for mixed-mode interconnect 

optimization


